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We consider a class of bistable periodically perturbed ordinary differential equations of importance in
mathematical physics and derive an asymptotic criterion for the existence of a tricritical point �TCP�. Surpris-
ingly, in the adiabatic limit the criterion is local and very simple. It also allows one to calculate the location of
a TCP in parameter space, which we illustrate with three examples.
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I. INTRODUCTION

Phase transitions in nonequilibrium systems have at-
tracted much attention in the past few decades. In this paper
we address the question of the type of phase transition seen
in systems placed in oscillating field. While there have been
many investigations of such systems using Monte Carlo
simulations �1–3� and while the phenomenon has been ob-
served experimentally �4�, to achieve progress by analytical
tools one has to, first of all, study mean-field models. It is in
the mean-field context that dynamic phase transition �DPT�
was first discussed by Tomé and de Oliveira �5� �see also
Mendes and Lage �6��. Other analytical investigations of the
nature of the DPT include �7–9�.

In this paper we address the type of dynamic phase tran-
sition undergone, and the existence of the tricritical point in
equations of the general type

�x� = f�x,�� + h cos 2�t, x � R , �1�

where, for all �, f is an odd function of x with at most three
zeros. If f�x ,�� has exactly three zeros, it is called bistable
�see assumptions �A i�–�A iii� for precise conditions on f�.
This type of equation arises in many different mean-field
models. For example, in the context of the ferromagnetic
Ising model in an oscillating magnetic field, x would corre-
spond to the mean magnetization, � is proportional to the
inverse of the temperature of the sample, h is the amplitude
of the external field, and � is the time relaxation parameter.
In the present paper we study the small � behavior which
corresponds to low-frequency external field.

We shall now attempt to explain the phenomenon of dy-
namic phase transition using the model equation

�x� = − x + tanh��x� + h cos 2�t . �2�

This equation is equivalent to the Suzuki-Kubo equation, Eq.
�2.9� of �10�; for the changes of variables required to put the
Suzuki-Kubo equation into the form �2�, the reader is re-
ferred to �9�. This equation was also studied by Tomé and de
Oliveira �5�. First of all, setting h to zero �no external field�

we observe two stable stationary nonzero solutions when �
�1. Decreasing � �which corresponds to increasing the tem-
perature�, we see that at �=1 the equilibrium solutions
merge in a supercritical pitchfork bifurcation producing a
single stable equilibrium solution at zero: f�x ,�� ceases to be
bistable. The temperature corresponding to the value 1 of our
parameter � is the Curie temperature and the transition de-
scribed is the ferro-para phase transition. It is important for
the forthcoming discussion that if the parameter � is in-
creased, the transition from paramagnetic to ferromagnetic
phase happens at the same value of �, �=1.

Now we fix ��1 and switch on the external field, h�0.
By the implicit function theorem, stationary solutions now
become periodic of period ones. For small values of h there
are two stable periodic cycles oscillating around the station-
ary solutions of Eq. �2� with h=0. However, it can be shown
�for a proof, see �9��, that for large h there is only one stable
periodic solution �cycle� and that its average x̄ over a period
is zero:

x̄ = �
0

1

x�t�dt = 0.

An important question is to understand how the two stable
cycles �and an unstable one which is not normally seen in
numerical simulations unless one performs calculations in
reverse time� merge to produce a single stable cycle. Two
possible minimal scenarios are depicted in Fig. 1, with h as a
parameter and x̄ as the dependent variable.

The difference between the two scenarios is of high physi-
cal relevance. Assume that we start with a stable periodic
solution and the parameter h is being increased adiabatically.
This solution has nonzero mean; we will call it the ferromag-
netic cycle. As h is increased we will see a transition be-
tween ferromagnetic and paramagnetic �zero-mean� cycles
which happens at some value of h which we will denote by
hfp. It has been observed by Tomé and de Oliveira �5� that
for small temperature �large �� this transition happens dis-
continuously. Moreover, for these values of �, the transition
between paramagnetic and ferromagnetic cycles when h is
being decreased happens at value hpf which is smaller than
hfp. This is consistent with the supercritical bifurcation �sce-
nario �b� of Fig. 1� of the paramagnetic cycle, see Fig. 2 for
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more details. The point in the �-h plane where the curves
hpf��� and hfp��� meet is called the tricritical point �TCP�. In
other words, at the TCP the phase transition changes from
being continuous to being discontinuous.

An alternative mean-field theory in the Ising context lead-
ing to an equation of the type

�x� = �x − �x3 + h cos 2�t �3�

�also known as the optical bistability equation �11�� was pro-
posed by Zimmer �7�, who argued that only continuous phase
transition can occur. In Monte Carlo simulations, some au-
thors �e.g., �1,12�� detected the TCP and some authors �e.g.,
�3�� disputed its existence. For more references and a review,
see �13�.

In this work, rather than address the adequacy of different
mean-field theories, we will analytically derive a simple cri-
terion on f which determines whether or not a TCP exists in
an equation of the general type �1�. In cases where TCP
exists, our approach also allows us to calculate its position in
the �→0 limit.

II. STATEMENT OF THE MAIN RESULT

In �9� we have considered the Suzuki-Kubo equation �2�
and the optical bistability equation �3�. The main result of �9�
is that Eq. �3� has at most three periodic solutions, while in
Eq. �2� for sufficiently large �, there is an interval of values
of h for which it has at least five periodic solutions.

However, the approach of �9� does not make any use of
the additional parameter of the problem, the relaxation time
�. In the present paper we consider a general bistable equa-
tion,

�x� = f�x� + h cos 2�t , �4�

with precise assumptions on f�x� to be specified later, and
derive a very simple criterion on f which ensures that for �
�0 small enough there is an interval of values of h for which
Eq. �4� has at least five periodic solutions. Amazingly, the
type of such a global event as bifurcation of periodic solu-
tions is governed by the behavior of f�x� at one point only.

The precise assumptions on f�x� used below are as fol-
lows:

�A i�: f�x�=−f�−x�;
�A ii�: there is a unique value ��0 such that f���= f�0�

= f�−��=0; f�x��0 for x��;
�A iii�: there is a unique value a�0, such that f��a�=0.
Since f�x� is an odd function by �A i�, by �A iii� it has a

global maximum in the region x�0 at a. We find that if
f��a��0 then, for small �, the bifurcation of the unstable
symmetric solution is a supercritical pitchfork �Fig. 1�b�� and
therefore the corresponding phase transition is discontinuous.
If f��a��0 then the bifurcation is a subcritical pitchfork
�Fig. 1�a�� and the phase transition is �locally� continuous.

If the function f�x� depends on a parameter �, then our
criterion can be used to investigate existence of the TCP and,
moreover, to find the location of the TCP in the �→0 limit.
Essentially, the TCP is located at the value of � where the
function fxxx(a��� ,�) changes sign.

The structure of the remainder of the paper is as follows.
After collecting the necessary definitions and results from
�9�, in Sec. IV we derive the above criterion for having at
least five periodic solutions as �→0; this criterion is then
used in Sec. V to derive the value�s� of � for which the
tricritical point occurs as �→0 in the Suzuki-Kubo equation
�2�. In that section we also show that even an equation �4�
with f�x� being the simplest “correct” Padé approximant of
tanh��x�−x �the �3/2� one� correctly reproduces the �local�
bifurcation behavior of Eq. �2�.

III. PRELIMINARY RESULTS

It is proved in ��9�, Theorem 2.1� that there exists a value
of h, h0, such that for all h�h0 Eq. �4� has precisely one
periodic solution �which from symmetry considerations is
then necessarily Liapunov stable and has mean zero�.

We want to understand the nature of the bifurcation that
the zero-mean solution undergoes at the value h=hcs where it
becomes stable never to lose stability again as we increase h.
To achieve our aim, we apply the Liapunov-Schmidt reduc-
tion �LSR�. The reduction, around a particular solution x0�t�,

x x
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h

(b)

h

FIG. 1. Two possible minimal scenarios of the emergence of a
single periodic solution. In scenario �a� three solutions merge in a
subcritical pitchfork bifurcation. In scenario �b� the central solution
first undergoes a supercritical pitchfork bifurcation, emitting two
unstable solutions. These unstable solutions disappear in fold bifur-
cations upon meeting the stable solutions.

x
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h
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FIG. 2. If the bifurcation of the zero-mean solution is a super-
critical pitchfork �scenario �b� of Fig. 1�, one can effect a discon-
tinuous change �a first-order phase transition� on the stable periodic
cycle by adiabatically changing h. Here the fragment of the bifur-
cation diagram is drawn in thin lines and the evolution of the mean
of the periodic cycle is indicated by the thick lines. When increas-
ing the h, the transition from ferro �nonzero-mean� to para �zero-
mean� cycle happens at h=hfp �part �a��. However, if h is decreased
the para-ferro transition happens at a different value, h=hpf �hfp

�part �b��.
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leads to the construction of a reduced function g: R3→R
such that the solutions of g�y ,h ,��=0 are locally in one-to-
one correspondence with the solutions of the original equa-
tion. Under this correspondence the solution x0�t� is mapped
into the zero solution of g�y ,h ,��=0. It is rarely possible to
compute g�y ,h ,�� explicitly, but one can examine the bifur-
cation picture around x0 by computing the derivatives of g.
For more details on the reduction we refer the reader to �14�.

In �9� it is shown that, due to the symmetry of f�x�, the
bifurcation of the zero-mean solution has to be a pitchfork.
Thus at the bifurcation point we have the criticality condition
gy =0, and gyy =0.

Furthermore, since it is the stability-gaining bifurcation,
gyh	0 and hence the direction of bifurcation in the nonde-
generate case is determined by the sign of gyyy. The relevant
formulas derived by the LSR in �9� are

gy = �
0

1

f��x0�t��dt � 0; �5�

gyyy = − �
0

1

f�„x0�t�…exp�2

�
�

0

t

f�„x0�s�…ds�dt , �6�

where x0�t� is the zero-mean solution undergoing bifurcation.
Here Eq. �5� should be considered as a condition on x0�t� to
be undergoing a bifurcation �a “criticality condition”�. If gyyy
is negative, the bifurcation at h=hcs is a supercritical pitch-
fork, the scenario shown on Fig. 1�b�. Hence the main ques-
tion we need to ask ourselves is, under what condition on
f�x� is gyyy negative? It turns out that, under the assumption
that � is sufficiently small, the answer to this question is very
simple.

IV. DIRECTION OF THE PITCHFORK AS �\0

First of all, we need to characterize the critical solution
x0�t�. Note that x0�t+1 /2�=−x�t�. As before, we let a be the
point of global maximum of f�x� for x�0.

We observe that there are values t±
j � �0,1�, j=1,2, such

that x0�t±
j �= ±a. This is obvious as otherwise the criticality

condition �5� cannot be met.
Now let us set


�t� = �
0

t

f�„x0�s�…ds . �7�

Then at t±
j we have 
��t�= f�(x0�t�)=0 by definition of t±

j and
a. Furthermore,


��t� = f�„x0�t�…x0��t� .

Hence 
�t� reaches a maximum twice over a period of the
solution, at points t� and �by symmetry� t�+1 /2. Since t� is
one of the points of the set 	t±

j 
, we have x0�t��=a. Also,

�t��=
�t�+1 /2� and 
��t��=
��t�+1 /2�.

Now we apply the method of Laplace �15�, as �→0, to
the integral in Eq. �6�. We compute the value of gyyy as

gyyy = − 2�2�
exp��2/��
�t���f��a�

�− �2/��
��t��
�1 + O���� . �8�

From Eq. �8� we see that as �→0, amazingly, the direction
of the pitchfork bifurcation is determined solely by the sign
of f��a�: if this is positive, the bifurcation is supercritical
and we will have an interval of values of h where Eq. �4� has
five periodic solutions. We formulate this as a theorem.

Theorem 4.2 As �→0, under the assumptions �A i�–�A
iii�, the stability-gaining bifurcation of the symmetric solu-
tion at h=hcs is a subcritical bifurcation if f��a��0 and it is
a supercritical pitchfork if f��a��0.

V. EXAMPLES

Example 1. If f�x�=�x−�x3, see Eq. �3�, with positive �
and � then f��a�=−6� is always negative, again confirming
that the bifurcation of the symmetric solution must be a sub-
critical pitchfork.

Example 2. Let us consider again the Suzuki-Kubo equa-
tion �2� and compute the location, as �→0, of the tricritical
point �see Fig. 3�, that is, the value of ��1 such that the
bifurcation flips from being sub- to supercritical.

In other words, we want to find the value of �, such that
if a����0 solves the equation f�(a���)=0, where f�x�
=tanh��x�−x, we also have f�(a���)=0. We obtain

a��� =
1

�
tanh−1��� − 1

�
 .

Hence we find that f�(a���)=0 is equivalent to the amaz-
ingly simple expression

0 0.1 0.2 0.3 0.4 0.5
ε

1.5

1.6

1.7
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β

0.5 1 1.5 2 2.5 3
h

1

5

10

β

F P

F + P

TCP

FIG. 3. Dependence of the type of the periodic solutions on the
parameters � and h in Eq. �2� with �=1 /2. F marks the region of
existence of a nonzero-mean �ferromagnetic� stable periodic solu-
tion and P marks the region with a stable zero-mean solution �para-
magnetic�. For large values of � there is a range of h in which F and
P solutions can co-exist. The point at which this range shrinks to
zero is the tricritical point �TCP�. Inset: location of the TCP as a
function of �. For small values of � the computation becomes un-
stable �5� due to the exponential narrowing of the overlap �F+P�
region �9�.
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2��− 3 + 2�� = 0,

so that

�tcp =
3

2
+ O��� .

Incidentally, in �9� �see Theorem 4.1 and Remark 4.2� it
was shown that for ��3 /2 the bifurcation is subcritical for
all values of �, so we expect the correction term to be posi-
tive. This prediction is verified numerically in the inset of
Fig. 3.

Example 3. Let us consider the simplest “correct” Padé
approximant of the right-hand side of the Suzuki-Kubo equa-
tion �2�. To be correct we would like it to have the same
�linear� rate of growth at infinity as the Suzuki-Kubo equa-
tion itself. Thus the simplest such approximant would be the
�3/2� Padé,

f�x� =
1

3

x�15�� − 1� + x2��3 − 6�2��
5 + 2�2x2 .

Following the same procedure as before, we find that Eq. �4�
with the above right-hand side also has a tricritical point and
that

�tcp = 1.493 366 856 + O��� .

We remind the reader that the cubic approximation to the
Suzuki-Kubo f�x� has no tricritical point, the bifurcation be-
ing always subcritical. For comparison, the fifth order

McLaurin series truncation of the Suzuki-Kubo f�x� is not in
general bistable at all.

VI. CONCLUSIONS

We have developed a simple criterion to detect if an equa-
tion of the type �1� has a discontinuous phase transition for a
physically important class of nonlinearities f�x�. Applying
this criterion allows one to check for existence of a tricritical
point and even find its location.

It would be interesting to extend our theory to cover the
mean-field theory derived for the Blume-Capel model by Ke-
skin et al. �16�. The results of �16� seem to predict a more
complicated bifurcation diagram than the minimal ones of
Fig. 1, with multiple tricritical points. Another obvious ex-
tension would be to relax the somewhat restrictive assump-
tion �A iii�. In particular, if the range of the bifurcating so-
lution x0�t� is �−A ,A�, the behavior of f�x� for �x��A is not
relevant to the bifurcation picture. Furthermore, we left un-
proved the question of uniqueness of bifurcation from the
zero-mean solution; it seems plausible that this is related to
assumption �A iii�.
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